فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    54
  • شماره: 

    1
  • صفحات: 

    99-110
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    37
  • دانلود: 

    15
چکیده: 

Efficient distribution of service requests between fog and cloud nodes considering User mobility and fog nodes’ overload is an important issue of fog computing. This paper proposes a heuristic method for task placement considering the mobility of Users, aiming to serve a higher number of requested services and minimize their response time. This method introduces a formula to overload prediction based on the entry-exit ratio of Users and the estimated time required to perform current requests that are waiting in the queue of a fog node. Then, it provides a solution to avoid the predicted overloading of fog nodes by sending all delay-tolerant requests in the overloaded fog node’s queue to the cloud to reduce the time required for servicing delay-sensitive requests and to increase their acceptance rate. In addition, to prevent requests from being rejected when the mobile User leaves the coverage area of the current fog node, the requests in the current fog node’s queue will be transferred to the destination fog node. Simulation results indicate that the proposed method is effective in avoiding the overloading of the fog nodes and outperforms the existing methods in terms of response time and acceptance rate.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 37

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 15 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    16
  • شماره: 

    2
  • صفحات: 

    38-53
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    51
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 51

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

LI QIN T. | CHUANG L. | YANG N.

اطلاعات دوره: 
  • سال: 

    2010
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    567-572
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    123
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 123

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    3
تعامل: 
  • بازدید: 

    170
  • دانلود: 

    0
چکیده: 

User Behavior MODELING IS ONE OF WEB USAGE MINING APPLICATIONS HELPING TO UNDERSTAND THE Behavior OF A User WHILE INTERACTING WITH THE WEB. SINCE THE ACTIVITY INFORMATION OF UserS ARE RECORDED IN WEB LOG FILES, LOG DATA IS THE STARTING POINT FOR ANY WEB MINING PROCESS. THUS, THE QUALITY OF RESULTS STRONGLY DEPENDS ON THE QUALITY OF INPUT DATA. IN THIS PAPER, THE RESULT OF OUR SCENARIO-BASED EXPERIMENT IN PREPROCESSING LOG DATA FOR ANALYZING User Behavior IS PRESENTED. THE PROPOSED METHOD IS PRACTICALLY APPLIED ON FERDOWSI UNIVERSITY OF MASHHAD (FUM) LOG DATA AND THE RESULTS ARE DISCUSSED.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    1394
  • دوره: 

    7
  • شماره: 

    2
  • صفحات: 

    385-406
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1509
  • دانلود: 

    485
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1509

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 485 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

AZAMI M. | FATTAHI R. | PARIROKH M.

اطلاعات دوره: 
  • سال: 

    2011
  • دوره: 

    -
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    117
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 117

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Karimi Dehkordi Mostafa | Nasiri Sepideh

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    59
  • شماره: 

    1
  • صفحات: 

    99-110
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    8
  • دانلود: 

    0
چکیده: 

E-commerce plays a vital role in today’s economy, and website usability is crucial for attracting customers and achieving higher conversion rates. Process mining offers significant advantages in analyzing User Behavior, providing insights into typical User paths and identifying deviations. This study aims to enhance the usability of e-commerce websites by leveraging User Behavioral data and process mining tools. User Behavioral data from a cosmetics e-commerce website were collected and preprocessed. Various metrics were established to evaluate usability, revealing low task completion rates and high bounce rates. Bottlenecks were identified where Users faced delays, indicating areas for improvement. Recommendations included redirecting Users who remove items from their cart to the homepage, suggesting similar products, and addressing payment page issues. These suggestions aim to improve User experience and increase conversion rates. Despite limitations, such as the lack of detailed data, this study demonstrates the potential of process mining tools in enhancing website usability.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 8

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    16
  • شماره: 

    1
  • صفحات: 

    23-36
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    11
  • دانلود: 

    0
چکیده: 

In today's age, the Internet has become the most important source of information and its supply for many goods and services due to its ease of use, wide range and high speed. The unique characteristics of the Internet and its complete superiority over other markets have led many organizations to expand their services and products in the Internet markets. Therefore, the Internet environment has become a very competitive environment for organizations. In the process of buying and checking User and consumer Behavior, goods or services will be exchanged, and these goods or services can be information, physical or virtual products, and even emotions. Many kinds of research have been conducted in the analysis of Users' Behavior, but these researches were not highly accurate, therefore, in this research, an attempt was made to provide a solution for recommending items based on Users' past Behaviors to improve the accuracy of past methods. This proposed method can eliminate the noise in the data by using fuzzy logic and hierarchical analysis which is used for the phase of selecting the effective features and also works on more effective data to increase the accuracy. The tree proposed in this research has the lowest possible height and this causes the computational overhead to be greatly reduced. The proposed method was compared with several competing methods and the results indicate the superiority of the proposed method over the compared methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    30-40
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    107
  • دانلود: 

    10
چکیده: 

در سطوح بین المللی و همچنین ایران، شبکه­های اجتماعی و سایت­ها بیشتر بر روی کیفیت محصولات خود با توجه به نظرات کاربرانشان تمرکز می­نمایند و توجهی به سطح امنیت و قابلیت اعتماد ندارند و حتی در مواقعی که رفتار مشتریان مورد تحلیل قرار می­گیرد، توجهی به کاربران غیر عادی و سودجو نمی­شود. ایده اصلی این پژوهش بررسی رفتار مشتریان و پیش­بینی رفتار آن­ها در آینده بر مبنای یادگیری عمیق می­باشد تا بتوان کیفیت خدمات به کاربران معتبر را افزایش داد. در این پژوهش، روشی مبتنی بر تکنیک یادگیری عمیق ارائه می­شود که با کمک آن رفتار کاربران در فروشگاه­های اینترنتی تحلیل می­شود. منظور از تحلیل رفتار کاربران، شناسایی گرایش یا جهت­گیری مشتری در مورد یک محصول خاص است. در روش پیشنهادی این پژوهش، پس پردازش اولیه رفتار کاربران و استخراج ویژگی­ها، از الگوریتم شبکه عصبی عمیق برای آموزش مجموعه­ای از داده­ها استفاده می­شود. پیاده­سازی روش پیشنهادی در نرم­افزار MATLAB، انجام شده است. برای ارزیابی روش این پژوهش از معیارهای مرسومی که در کاربردهای داده­کاوی به کار گرفته می­شود از جمله صحت، بازخوانی و امتیاز F، استفاده کرده­ایم. برای این منظور آزمایشاتی را اجرا و ارزیابی­های مختلف ارائه گردیده است. با توجه به آزمایشات انجام شده، مشاهده می گردد که روش پیشنهادی از نظر معیارهای ارزیابی داده­کاوی در اولویت اول قرار می­گیرد. با بکارگیری روشها و  با استفاد از نتایج این تحقیق می توان در راستای ایجاد امنیت و کاهش مخاطرات برای فعالیت های مختلف در جامعه اطلاعاتی و پاسداری از ارزشهای جامعه به پیش بینی رفتار مشتریان در سایتهای خاص پرداخت.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 107

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 10 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Rostami Mohammad Sadegh | Shahzadi Ali

اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    2
  • شماره: 

    4
  • صفحات: 

    13-22
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    22
  • دانلود: 

    0
چکیده: 

One of the challenges of any network is User traffic analysis and prediction. Mobile networks have achieved notable growth in recent years. Traffic information on these networks play a crucial role in service quality control, User access control, and optimization. There are various methods for traffic prediction, including harmonic analysis and mathematical transformations, time series methods, and machine learning. Due to the increasing volume of User data on mobile networks, machine learning methods have gained popularity in recent decades. In this paper, we introduce a probabilistic Behavioral model and propose a new method that focuses on human Behavior by categorizing Users through clustering and utilizing their similarities. Assuming a history of past User data is available, Users with similar Behavior are grouped into categories using clustering methods, and each category is assigned a label. The average of each cluster represents the traffic in that category. To predict the traffic of new Users, our proposed method utilizes classification functions to determine the most appropriate category. Subsequently, weighted averages are used to calculate the overall network traffic. We compare our proposed method with time series and Fourier transform methods through three different scenarios. The results indicate that our method exhibits significant superiority over the other methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 22

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button